Numerical Simulation of CO2 Flooding of Coalbed Methane Considering the Fluid-Solid Coupling Effect
نویسندگان
چکیده
CO2 flooding of coalbed methane (CO2-ECBM) not only stores CO2 underground and reduces greenhouse gas emissions but also enhances the gas production ratio. This coupled process involves multi-phase fluid flow and coal-rock deformation, as well as processes such as competitive gas adsorption and diffusion from the coal matrix into fractures. A dual-porosity medium that consists of a matrix and fractures was built to simulate the flooding process, and a mathematical model was used to consider the competitive adsorption, diffusion and seepage processes and the interaction between flow and deformation. Due to the effects of the initial pressure and the differences in pressure variation during the production process, permeability changes caused by matrix shrinkage were spatially variable in the reservoir. The maximum value of permeability appeared near the production well, and the degree of rebound decreased with increasing distance from the production well.
منابع مشابه
Comparison of Numerical Simulators for Greenhouse Gas Storage in Coalbeds, Part I: Pure Carbon Dioxide Injection
The injection of carbon dioxide (CO2) in deep, unmineable coalbeds is a very attractive option for geologic CO2 storage: the CO2 is stored and at the same time the recovery of coalbed methane (CBM) is enhanced. The revenue of methane (CH4) production can offset the expenditures of the storage operation. Coalbeds form complex gas reservoirs characterized by their dual porosity: they contain both...
متن کاملThe Effects of Gas Adsorption on Swelling, Visco-plastic Creep and Permeability of Sub-bituminous Coal
Unmineable coal is an important resource because of its potential to produce coalbed methane (CBM). CBM has grown to supply approximately 10% of US natural gas production and is becoming important worldwide as an energy source [1]. Furthermore, when CO2 is injected, it has the potential to enhance the amount of methane produced (ECBM) and to geologically sequestrate CO2 as an adsorbed phase. Th...
متن کاملNumerical Simulation of Hydraulic Frac-turing Process for an Iranian Gas Field in the Persian Gulf
Most of the Iranian oil and gas wells in the Persian Gulf region are producing through their natural productivity and, in the near future, the use of stimulation methods will be undoubtedly necessary. Hydraulic fracturing as a popular technique can be a stimulation candidate. Due to the absence of adequate research in this field, numerical simulation can be an appropriate method to investigate ...
متن کاملCARBON DIOXIDE MINIMUM MISCIBILITY PRESSURE ESTIMATION (CASE STUDY)
Carbon dioxide flooding is considered to be one of the most effective enhanced oil recovery methods for the light oil reservoirs. Depending on the operating pressure, the process might be miscible or immiscible. Minimum miscibility pressure (MMP) is the most important parameter for assessing the applicability of any miscible gas flood for an oil reservoir. The miscibility condition is determine...
متن کاملEvaluation of Eulerian Two-Fluid Numerical Method for the Simulation of Heat Transfer in Fluidized Beds
Accurate modeling of fluidization and heat transfer phenomena in gas-solid fluidized beds is not solely dependent on the particular selected numerical model and involved algorithms. In fact, choosing the right model for each specific operating condition, the correct implementation of each model, and the right choice of parameters and boundary conditions, determine the accuracy of the results i...
متن کامل